
UCRL-JRNL-234181

Asynchronous Event-Driven
Particle Algorithms

A. Donev

August 31, 2007

SIMULATION: Transactions of the Society for Modeling and
Simulation International



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Asynchronous Event-Driven Particle Algorithms

Aleksandar Donev1

1Lawrence Livermore National Laboratory,

P.O.Box 808, Livermore, CA 94551-9900

Abstract

We present, in a unifying way, the main components of three asynchronous event-driven algo-

rithms for simulating physical systems of interacting particles. The first example, hard-particle

molecular dynamics (MD), is well-known. We also present a recently-developed diffusion kinetic

Monte Carlo (DKMC) algorithm, as well as a novel stochastic molecular-dynamics algorithm that

builds on the Direct Simulation Monte Carlo (DSMC). We explain how to effectively combine

event-driven and classical time-driven handling, and discuss some promises and challenges for

event-driven simulation of realistic physical systems.

1



I. INTRODUCTION

There is a wide range of particle systems from computational science problems that

are best simulated using asynchronous event-driven (AED) algorithms. Examples include:

molecular dynamics (MD) for systems of hard particles [4, 18] such as disordered pack-

ings [3], granular materials [7], colloids [8, 15] and particle-laden flows [17]; kinetic Monte

Carlo (KMC) [12] simulation of diffusion-limited reactions (DKMC) [13] such as nucleation,

growth, and coarsening during epitaxial growth [14], diffusion quantum Monte Carlo [16],

nuclear reactions [20], bio-chemical reactions [19], and self-assembly of nano-structures [9];

direct simulation Monte Carlo (DSMC) [1] for micro hydrodynamics [? ], granular flows

[7], and plasma flows [10]; contact dynamics for modeling systems of rigid bodies computer

graphics [11]; and many others. As of yet unexplored are multi-scale and multi-physics

algorithms such as combined flow and diffusion with (bio)chemical reactions.

In this work we will focus on a class of particle-based problems that are very common

in computational materials science and are well-suited for AED simulation. Specifically, we

will focus on the simulation of large systems of mobile particles interacting with short-range

pairwise (two-body) potentials (forces). Our goal will be to reveal the common building

blocks of these simulations (e.g., event queues, neighbor searches), but also to highlight

the components that are problem specific (e.g., event prediction and processing). We will

present these components in some detail for three specific examples: hard-particle MD,

DKMC, and DSMC. Through the discussion of these examples we will demonstrate the

undeniable advantages of AED algorithms, but we will also reveal the difficulties with using

AED algorithms for realistic models.

A. Background

We consider the simulation of the time evolution of a collection of N interacting particles

in d-dimensions, starting from some initial condition. At any point in time, the system

Q = (Q,B) is characterized by the configuration Q = (q1, . . . ,qN), containing at least the

centroid positions ri for every particle i, and the additional global information B, which may

involve variables such as boundary conditions or external fields. The number of particles

N may also vary with time. For each particle i we may consider an arbitrary number of

2



attributes in addition to the position of the centroid, for example, q may also contain the

linear and/or angular velocity, the orientation and/or the chemical specie (shape, charge,

mass, internal composition) of particle i. Typically each particle configuration qi will at

least contain an integer that identifies its specie 1 ≤ si ≤ Ns, and some information will

be shared among all particles belonging to the same specie (ex., the charge or mass). In

particular, the symmetric interaction table Iαβ stores Ns(Ns + 1)/2 logical (true or false)

entries that specify whether species α and β interact or not.

Two particles i and j are overlapping only if a certain (generalized) distance between

them dij(qi,qj) ≥ 0 is less than some cutoff distance or diameter Dij. Overlapping particles

react with each other in an application specific manner. Typically the type of reaction

and Dij depends (only) on the species of the two particles and Dij, but there may also be

dependencies on time or some other external field parameters. For example, for (additive)

hard spheres Dij = (Di +Dj)/2 and the type of reaction is (hard-core) repulsion. For a non-

interacting pair of particles one may set Dij = 0. Particles may also overlap with boundaries

of the simulation domain, such as hard walls or reactive surfaces, however, typically the

majority of interactions are among particles.

We will assume that the time evolution (motion) of the system is mostly smooth with the

exception of certain discrete events, which lead to discontinuous changes in the configuration

of a certain collection of particles. Events may involve a single particle i, such as the change

of the internal state of the particle (e.g., decay reactions, spin flips, sudden changes in the

particle velocity). Events may also involve pairs of particles, for example, the collision

(exchange of momentum) between two particles i and j, or a chemical reaction between two

overlapping particles i and j leading to the creation and/or destruction of particles. For

now we will ignore events involving more than two particles. Some events may also involve

global variables in B and thus implicitly affect all of the particles.

We will refer to simulations as event-driven (also called discrete event simulations [6])

if the state of the system is evolved discontinuously in time from one event to another,

predicting the time of the next event whenever an event is processed. This is in contrast

with the more common time-driven simulations, where the state changes continuously in

time and is evolved over a sequence of small time steps ∆t, discovering and processing

events at the end of the time step. Typically, particle-based time-driven algorithms are not

exact, in the sense that they may miss events when the time step used is too large. Therefore,

3



the time step must be smaller than the estimated slowest time scales in the problem. This

leads to large inefficiencies when there are multiple dynamically-changing time scales. On

the other hand, event-driven algorithms automatically adjust the time step.

We will focus on asynchronous event-driven (AED) algorithms. In asynchronous algo-

rithms, there is a global simulation time t, typically the time when the last processed event

occurred, and each particle is at a different point in time ti ≤ t, typically the last time it

participated in an event. This is to be contrasted to synchronous event-driven algorithms,

where all of the particles are at the same time t. One of the most important examples of

a synchronous event-driven algorithm in materials science is the n-fold algorithm for per-

forming kinetic (dynamic) Monte Carlo simulations [12]. The applicability and efficiency

of synchronous algorithms hinge on the fact that the state of the system does not change

in-between events, as is common in lattice models where the positions of the particles are

discrete. For example, atoms may stay in the immediate vicinity of the crystal lattice sites

and only sometimes hop to nearby sites. In the types of problems that we will consider,

the positions of the particles will be continuous and continuously changing even in-between

events. Therefore, we will not discuss synchronous algorithms further. It is important to

point out that even in cases where the evolution of the system consists entirely of discrete

jumps (e.g., Markov chain transitions), asynchronous algorithms may be more efficient than

synchronous ones [9]. In general, one may combine the two algorithms by using the more

general asynchronous algorithm at the top level but treating a subset of the particles syn-

chronously, as if they are a super-particle with complex internal structure.

B. Model Examples

Atomistic or molecular-level modeling is one of the foundations of computational materials

science. The two most popular types of algorithms used in the simulation of materials are

molecular dynamics (MD) and Monte Carlo (MC) algorithms. Monte Carlo algorithms

are often used to study static equilibrium properties of systems, however, here we focus

on dynamic or kinetic Monte Carlo, where the time evolution of a system is modeled just

like in MD. For our purposes, the only important difference between the two is that MD

is a deterministic algorithm, in which deterministic equations of motions are solved, and

Monte Carlo is a stochastic procedure in which sample paths from an ensemble of weighted

4



paths is generated. In both cases one typically averages over multiple trajectories, starting

with different initial conditions and/or using a different random number seed. From the

perspective of AED algorithms, this means that random number generators (RNGs) are

involved in the determination of the time certain events occur as well as in the actual

processing of those events.

The very first molecular dynamics (MD) calculations simulated a system of hard disks

and hard spheres and used an AED algorithm. The hard-sphere system is a collection of

non-overlapping spheres (or disks), contained within a bounded region, and each moving

with a certain velocity vi = ṙi. Pairs of spheres collide and the colliding particles bounce

off elastically, preserving both linear momentum and energy. Many generalizations can be

considered, for example, the spheres may be growing in size and/or the particles may be

nonspherical [3], the collisions may not be perfectly elastic [7], some of the particles may

be tethered to each other to form structures such as polymer chains [18], etc. The general

features are that particles move along simple deterministic paths (such as straight lines) in-

between binary collisions, which are the primary type of event. The events take zero time and

involve deterministic changes of the velocities of the colliding particles. The ballistic motion

of the particles is described by Newton’s equations of motion, mv̇i = Fi (i.e., deterministic

ODEs). Event-driven MD algorithms for hard particles are discussed in considerable detail

in Ref. [4] and elsewhere, here we only present the essential components.

Direct simulation MC (DSMC) [1] is an MC algorithm that tries to mimic MD for fluids.

We will consider DSMC as a fast alternative to MD, even though it can also be viewed as

a particle-based MC method for solving the Boltzmann equation in dilute fluids. From our

perspective, DSMC is an approximate variant of MD in which the particle collisions are not

processed exactly, rather, particle collisions are stochastic and (attempt to) follow the same

probability distributions as would have exact MD. Specifically, nearby particles are randomly

chosen to undergo stochastic collisions and exchange momentum and energy, thus leading to

local conservation laws and hydrodynamic behavior. DSMC is applicable in cases when the

structure of the fluid and the detailed motions of all of the particles do not matter, as is the

case with solvent molecules (e.g., water) in fluid flow problems or large-scale granular flows

[7]. Traditionally DSMC has been implemented using a time-driven approach, in which at

each time step particles are first propagated in a ballistic (convective) fashion, and then a

certain number of stochastic particle collisions among nearby particles are processed. Here

5



we describe a novel AED algorithm for DSMC, and demonstrate how it can be integrated

with AED MD in order to replace the expensive MD with cheaper DSMC for some of the

species (e.g., solvent molecules).

The motion of the particles in-between events is not always deterministic. In particular,

an important class of problems concerns diffusing particles, that is, particles whose velocity

changes randomly very frequently (i..e, they make many small steps in random directions).

The motion of the particles is probabilistic, in the sense that the probability c(r, t + ∆t) of

finding a particle at a given position r at a certain time ∆t, assuming it started at the (space

and time) origin, is the solution to the time-dependent diffusion equation ∂tc = D∇2c (a

deterministic PDE), where D is the particle diffusion coefficient. A variety of reactions may

occur when a pair of particles collides, for example, particles may repel each other (colloids

[15]), they may stick or begin merging together (paint suspensions), or they may undergo

a chemical reaction that consumes the reacting particles and produces zero, one, two, or

possibly more new particles (a wide range of diffusion-limited reactions in materials [13, 19]

and biological systems [19]). Several approximate event-driven KMC algorithms have been

used in the past for this problem [19]. Here we will describe a recently-developed exact AED

algorithm for simulating a collection of diffusing hard particles [13]. It is worth pointing

out that one may also consider particles whose trajectories are a combination of ballistic

and diffusive motion, that is, motion that is described by Langevin’s equations (or other

stochastic ODEs or even PDEs). In that sense, we will see that both the MD and MC

algorithms share many common features.

II. A GENERAL AED PARTICLE ALGORITHM

In this work we focus on systems where particles only interact with nearby particles.

We will formalize this by defining a geometric hierarchy of regions around a given particle.

These particle proximity hierarchies are at the core of geometry-specific (GS) aspects of AED

simulation, which can be reused for different application-specific (AS) rules for moving and

interacting the particles. We will assign a hard core Ci to each particle such that a particle

may overlap with another particle only if their cores overlap. For (additive) hard spheres,

the core is nothing more than the particle itself. Next, we protect particle i against other

particles by enclosing it inside a protective region Pi, Ci ⊆ Pi, that is typically disjoint from

6



the majority of other protective regions. Finally, we assume that every protective region i

is contained within a neighborhood region Ni, Pi ⊆ Ni. The set of neighbors of i consists of

the particles j whose neighborhood regions intersect Ni, Ni ∩ Ni 6= 0, and which are of a

specie interacting with the specie of particle i, Isisj
= T .

We will assume that when a particle does not interact with other particles we can easily

follow its time evolution (motion), that is, given the current configuration qi(t), we can

probabilistically determine the position at a later time qi(t + ∆t). This is a single-particle

problem and can typically be solved analytically. For example, in MD the particle trajectory

is a unique (i.e., deterministic) straight path, ri(t + ∆t) = ri(t) + vi∆t, while in diffusion

problems it is the solution to a (stochastic) Langevin equation of motion. Event-driven al-

gorithms are efficient because they use such analytic solutions to quickly propagate particles

over potentially large time steps as long as they are far enough from other (interacting)

particles. We will also assume that one can solve two-body problems for the case when two

particles are isolated from other particles but may interact with each other. These two-body

problems are typically much more difficult to solve (quasi) analytically. Specific examples

will be given later.

A. The Event Loop

An AED algorithm consists of processing a sequence of time-ordered events. Each particle

i must store some basic information needed to predict and process events associated with

it. The particle time ti specifies the last time the configuration of particle i was updated,

ti ≤ t, where t is the current simulation time. Some particles may be time-driven and thus

not have their own event prediction. The rest of the particles are event-driven and each

such particle stores a prediction for its impending event (te, p, ν), specified via the predicted

time of occurrence te (a floating point number), the event partner p (an integer), and the

event qualifier (type of event) ν (also an integer). The partner p could be some pre-specified

invalid value to identify time-driven particles. Note that the event schedules must be kept

symmetric at all times, that is, if particle i has an impending event with j, then particle j

must have an impending event with i. A particle may store multiple event predictions, in

order to avoid re-predicting events if the impending event is invalidated, however, we will

not explicitly handle this possibility due to the complications it introduces.

7



The exact interpretation of p and ν, for a given particle i, is application- and geometry-

specific. Some common types of events can be pre-specified by reserving certain values of

the event partner p:

p = 0 An update of the event prediction for i, not requiring an update of qi. The value

ν = 0 means that qi has not changed since the last prediction for i (thus allowing

stored information from previous predictions to be reused if needed), ν = 1 means

that an event occurred which did not alter the geometry (for example, the position of

i is the same but its velocity changed), while ν = −1 means that this particle was just

inserted into the system and a geometry update is necessary as well.

p = i A single-particle event that requires an update of qi. The special value ν = 0 denotes

a simple time advance of i without any additional event processing, ν < 0 denotes an

event that does not change the geometry (for example, only the velocity of a particle

changes), and ν > 0 is used for additional AS events that may also change the geometry

(e.g., particle decay).

1 ≤ p ≤ N and p 6= i An unprocessed binary reaction between particles i and j = p, with

additional AS information about the type of reaction stored in ν, for example, elastic

collision, a certain chemical reaction, etc.

p =∞ A “boundary” event requiring the update of the particle geometry. If ν = 0 then

only the protective region Pi needs to be updated, if ν = −1 then the neighborhood

Ni needs to be updated (collision with a virtual boundary), ν < −1 denotes collisions

with pre-specified boundaries (such as hard walls), and ν > 0 specify AS boundary

events (such as collisions with reactive surfaces).

p = −∞ Denotes an invalid event, meaning that this particle is not in the event queue and

is handled separately, for example, it is time-driven.

It is important to point out that we are not suggesting that an actual implementation needs

to use integers to identify different types of events. In an object-oriented framework events

may be represented as objects that inherit from a base event class and have methods to han-

dle them, with the base implementation providing handlers for certain pre-defined (single,

pair, and boundary) types of events. We do not discuss here the possible ways to organize

8



an inheritance hierarchy of classes for AED simulations, since such a hierarchy involves mul-

tiple complex components, notably a module for handling boundary conditions in static and

dynamic environments, a module for handling static and dynamic particle geometry (over-

lap, neighborhoods, neighbor searches, etc.), an event-dispatcher, a visualization module,

application-specific modules for event scheduling and handling, etc.

Algorithm 1 represents the main event loop in the AED algorithm, which processes events

one after the other in the order they occur and advances the global time t accordingly. It

uses a collection of other auxiliary geometry-specific (GS) or application-specific (AS) steps,

as marked in the algorithm outline. Specific examples of various GS and AS steps are given

in the next section.

1. Non-Particle Events

In a variety of applications the majority of events can be associated with a specific

particle, and we schedule one event per particle in the event queue. However, sometimes

there may be events that are associated with a (possible large) group of particles, or events

that are not specifically associated with a particle. We consider these non-particle events as

application-specific “external” events in Algorithm 1.

An important example of such an event are time step events. Namely, some group of

particles may not be propagated asynchronously using the event queue, instead, the particles

in the group may be updated synchronously, for example, in regular time intervals ∆t. There

may in fact be multiple such groups each with their own timestep, for example, each specie

might have its own time step. These should also be ordered in time and the next one chosen

as the external event in Step 2 in Algorithm 1. A separate priority queue may be used for

ordering the external events. In general, there may be an event queue of events associated

with particles, with cells, with species, etc. These may be separate queues that are joined

at the top or they can be merged into a single event-queue.

B. Near-Neighbor Search

All large-scale particle-based algorithms use various geometric techniques to make the

number of neighbors of a given particle O(1) instead of O(N). Reference [4] provides exten-

9



Algorithm 1 Process the next event in the event queue.

1. Find (query) the top of the event queue (usually a heap) to find the next particle i to have

an event with p at te. Note that steps marked as (AS+C) below may reorder the queue

and/or cycle back to this step.

2. Find the next “external” event to happen at time tex, possibly using an additional event

queue (AS).

3. If tex < te then process the external event (AS) and cycle back to step 1.

4. Remove i from the event queue and advance the global simulation time t← te.

5. If p = 0 and ν = −1 then build a new Ni and then check if i overlaps with any of its new

neighbors (GS). If it does, process the associated reactions (AS+C), otherwise build a new

Pi as in step 8a.

6. Else if p = i then update the configuration of particle i to time t using a single-particle

propagator (AS), and set ti ← t. If ν 6= 0 then process the single-particle event (AS+C). If

ν > 0 then search for overlaps as in step 5.

7. Else if 1 ≤ p ≤ N then update the configuration of particles i and j = p using a two-particle

propagator (AS), set ti ← t and tj ← t, and then process the binary reaction between i and j

(AS+C). This may involve inserting particle j back into the queue with te = t, p = 0, ν = 0.

8. Else if p =∞, then update qi and ti as in step 6. If ν > 0 then process the boundary event

(AS+C), otherwise

(a) If ν = 0 then update Pi (AS+GS), typically involving an iteration over the neighbors

of i.

(b) Else if ν = −1 then update Ni and identify the new neighbors of particle i (GS).

(c) Else if ν < −1 process the geometry-induced boundary event (GS+AS).

9. Predict a new te, p, and ν for particle i by finding the minimal time among the possible

events listed below. Each successive search needs to only extend up to the current minimum

event time, and may return an incomplete prediction te > t, p = 0, ν = 0, where te provides

a lower bound on the actual event time.

(a) When particle i leaves Pi or Ni (AS).

(b) When particle i undergoes a single-particle event (AS).

(c) When particle i first reacts with a neighbor j (AS), as found by searching over all

neighbors j whose protective region Pj intersects Pi (GS). If a particle j gives the

current minimum event time, remove it from the event queue. If such a particle j has

an event partner that is another particle (third party) k 6= i, update the positions of

j and k using the two-particle propagator as in step 7, invalidate k’s event prediction

by setting its te ← t, p ← 0, ν ← 0, and update its position in the event queue

(alternatively, one may use lazy invalidation strategies).

10. Insert particle i back into the event heap with key te and go back to step 1.

10



sive details (and illustrations) of these techniques for hard spheres and ellipsoids; here we

summarize only the essential components.

1. Linked List Cell (LLC) Method

The most basic technique is the so-called linked list cell (LLC) method. The simulation

domain, typically an orthogonal box, is partitioned into Nc cells, typically cubes. Each

particle i stores the cell ci to which its centroid belongs, and each cell c stores a list Lc of all

the particles it contains (usually we also store the total number of particles in the cell). Given

a particle and a range of interaction, the lists of potential neighbors is determined by scanning

through the neighboring cells. For maximal efficiency the cell should be larger than the

largest range of interaction so that only the nearest-neighbor cells need to be searched. There

are more sophisticated neighbor search methods developed in the computational geometry

community, such as using (colored) quad/oct-trees, however, we are not aware of their

use in AED implementations, likely because of the implementation complexity. This is an

important subject for future research.

It is important to point out that in certain applications the cells themselves play a crucial

role in the algorithm, typically as a means to provide mesoscopic averages of physical vari-

ables (averaged over the particles in a given cell) used to switch from a particle-based model

to a continuum description. For example, in PIC (particle-in-cell) algorithms for plasma

simulation, the cells are used to solve for background electric fields using FFT transforms

[10]. In DSMC, the algorithm stochastically collides pairs of particles that are in the same

cell. In some applications, events may be associated with the cells themselves, instead of or

in addition to the events associated with particles [5]. Usually the same cells are used for

both neighbor searches and averaging for simplicity, however, this may not be the optimal

choice in terms of efficiency.

For a method that only uses the LLC method for neighbor searches, the neighborhood

region Ni is composed of the (typically 3d, where d is the dimensionality) cells that neighbor

ci. The protection region Pi may be a simple geometric region like a sphere inscribed in Ni

(sphere of diameter smaller than the cell size), it may be that Pi ≡ ci + Ci, or Pi ≡ Ni, or

it may be that Pi ≡ Ni ∩ (ci + Ci).

11



2. Near-Neighbor List (NNL) Method

Another neighbor search method is the near-neighbor list (NNL) method, which is de-

scribed for hard particles in Ref. [4]. The idea is to use as Ni a region that (when it is

created) is just an enlargement of the particle by a certain scaling factor µ > 1. When Ni

is created the method also creates a (linked) list of all the neighborhoods that intersect it,

to form NNL(i) (hard walls or other boundaries may also be near neighbors). This list of

(potential) interactions can then be reused until the particle core Ci protrudes outside of

Ni. This reuse leads to great savings in situations where particles are fairly localized. Note

that the LLC method is still used in order to create Ni and NNL(i) even if NNLs are used,

in order to keep the maximal cost of pairwise searches at O(N) instead of O(N2). In some

situations (such as mixed MD/DSMC simulations as we describe later) one may use NNLs

only for a subset of the particles and use the more traditional LLCs for others.

3. Cell Bitmasks

In our implementation, in addition to the list of particles Lc, each cell c stores a bitmask

Mc consisting of Nbits > Ns + 4 bits (bitfields). These bits may be one (set) or zero (not

set) to indicate certain properties of the cell, specifically, what species of particles the cell

contains, whether the cell is event or time driven, and to specify boundary conditions. Bit

γ in the bitmask Mc is set if the cell c may contain a particle of specie γ. The bit is set

whenever a particle of specie γ is added to the cell. When performing a neighbor search for

a particle i, cells not containing particles of species that interact with specie si are easily

found (by OR’ing the cell masks with the si’th row of Isisj
) and are simply skipped. This

speeds can significantly speed up the neighbour searches in cases where not all particles

interact with other particles.

For the purposes of a combined event-driven time-driven algorithm one may also need to

distinguish those cells where particles are treated using a fully event-driven (ED) scheme.

We use one of the bits in the bitmasks, bit γED, to mark event-driven (ED) cells , and the

choice of such cells is in general application specific. For example, for diffusion problems,

cells with a high density may be treated more efficiently using time-driven (small hopping)

techniques while areas of low density may be treated more efficiently using the asynchronous

12



event-driven algorithm. In our combined MD with DSMC algorithm cells near non-DSMC

particles are event-driven while those containing only DSMC particles are treated as time-

driven cells. Note that all of the cell bitmasks should be reset and then re-built (i.e.,

refreshed) periodically. In our experience, it is necessary to introduce at least one “sticky”

bit γst that is not cleared but rather persists (has memory), and is initialized to zero (not

set) at the beginning of the simulation.

The cell masks can also be used to specify partitionings of the simulation domain. This

is very useful in specifying more general boundary conditions in situations when the event-

driven simulation is embedded inside a larger domain that is not simulated explictly. For

example, a molecular dynamics simulation may be embedded in a multiscale solver where

the surrounding space is treated using a continuum method (finite element or finite volume,

for example) coupled to the particle region through an intermediary boundary layer. Simi-

lar considerations apply in parallelization via domain decomposition, where the simulation

domain simulated by a single processing element (PE) or logical process (LP) is embedded

inside a larger region where other domains are simulated by other PEs/LPs.

We classify the cells as being interior, boundary, and external cells (a specific illustrative

example is given in Fig. 1). Our implementation uses bits in the cell bitmasks to mark

a cell as being boundary (bit γB), or external (bit γP ), the rest are interior. Interior cells

are those for which complete boundary conditions are specified and that cannot be directly

affected by events occuring outside of the simulation domain (the interior cells are divided

into event-driven and time-driven as discussed earlier). Boundary cells surround the interior

cells with a layer of cells of thickness wB ≥ 1 cells, and they represent cells that are affected

by external events (i.e., events not simulated directly). External cells are non-interior cells

that are not explicitly simulated, rather, they provide a boundary condition/padding around

the interior and boundary cells. This layer must be at least wB cells thick, and the cells

within a layer of wB cells around the simulation domain (interior together with boundary

cells) are marked as both external and boundary cells (e.g., these could be ghost cells in

parallel simulation). All of the remaining cells are purely external cells and simply ignored

by the simulation.

13



III. MODEL EXAMPLES

In this section we present the handling of the various AS and GS steps in Algorithm 1

for three specific model applications.

A. Event-Driven Molecular Dynamics (EDMD)

Hard-particle molecular dynamics is one of the first applications of AED algorithms in

computational science, and is discussed in more detail in Ref. [4] and references therein.

Hard-sphere MD has been used extensively in simulations of physical systems over the past

decades and is also one of the few particle AED algorithm that has been studied in the

discrete-event simulation community, as the billiards problem. Because of this rich history

and extensive literature we only briefly discuss EDMD focusing on how it fits our general

framework.

The basic type of event in EDMD are binary collisions, which alter particle momenta,

typically using elastic collision laws (conservation of momentum and energy). Collisions

are assumed to have no duration and (very unlikely) triple collisions are broken up into a

sequence of binary ones. In-between collisions particles move ballistically along simple trajec-

tories such as straight lines (force-free motion) or parabolas (constant-acceleration motion).

For hard spheres, event time predictions are based on (algebraic) methods for finding the

first root of a polynomial equation (linear, quadratic or quartic [8]). For particle shapes that

include orientational degrees of freedom, such as ellipsoids, numerical root finding techniques

need to be used [4].

When LLCs are used, the main type of boundary event are cell transfers, which occur

when the centroid of a particle i collides with the boundary of the cell ci. If the cell is at

the boundary, a unit cell change occurs for periodic boundaries (i.e., wrapping around the

torus), and hard-wall collisions occur for hard-wall boundaries. When NNLs are used, cell

transfers do not have to be processed (i.e., one can set Pi ≡ Ni), unless it is important to

have accurate LLCs [as in DSMC, where Pi ≡ Ni ∩ (ci + Ci)].

The main AS steps in Algorithm 1 for (classical) MD simulations are:

• Step 6 consists of updating the particle position, and possibly also velocity, ballistically.

14



• Step 7 consists of updating the positions of each of the particles separately, as in step

6, and then updating their velocities taking into account the collisional exchange of

momentum.

• For collisions with hard walls in Step 8, the particle velocity is updated accordingly.

Cell transfers in step 8c consist of updating the LLCs by removing the particle from its

current cell and inserting it into its new cell (found based on the direction of motion of

the centroid). If the new cell is across a periodic boundary, the centroid is translated

by the appropriate lattice cell vector (if NNLs are used, this may require updating

information relating to periodic boundaries for each interaction).

• Step 9 is the most involved and time consuming:

– In step 9a, the time of the next cell transfer is predicted based on the centroid

velocity. If NNLs are used, then the time of (virtual) collision of the core Ci with

the interior wall of Ni is also calculated.

– In step 9c, predictions are made for binary collisions between particle i and each

of the particles in neighboring cells, or between i and each of the particles in

NNL(i).

B. Stochastic Event-Driven Molecular Dynamics (SEDMD)

We have recently developed a novel AED algorithm for simulating hydrodynamics at

the molecular level that combines DSMC, which is a method for simulating hydrodynamic

transport, with event-driven molecular dynamics (EDMD). The algorithm replaces some of

the deterministic collisions in EDMD with stochastic collisions and we term it Stochastic

EDMD (SEDMD). The algorithm is described in more detail in Ref. [2].

First we describe how to transform the traditional time-driven DSMC algorithm [1] into

an event-driven algorithm, and then combine this algorithm with EDMD. Finally, we explain

how to achieve higher efficiency by reverting the DSMC component to time-driven handling.

15



1. DSMC for Hydrodynamics

The DSMC algorithm can also be viewed as an approximation to molecular dynamics

in cases when the internal structure of the fluid, including the true equation of state, is

not important. In particular, this is the case when simulating a solvent in applications

such as the simulation of large polymer chains in solution. The exact trajectories of the

solvent particles do not really matter, and what really matters are the (long time and

long range) hydrodynamic interactions that arise because of local energy and momentum

exchange (viscosity) and conservation (Navier-Stokes equations). Any method that simulates

the correct momentum transfer localized at a sufficiently small scale is a good replacement

for full-scale MD, and can lead to great computational savings when a large number of

solvent molecules needs to be simulated.

DSMC [1] achieves local momentum exchange and conservation by performing a certain

number of stochastic collisions between randomly chosen pairs of particles that are inside

the same cell. The collision rate inside a cell containing NL particles is proportional to

NL(NL − 1) with a pre-factor that can be based on theory or fitted to mimic that of the

full MD simulation. For hard spheres, the probability of choosing a particular pair ij is

proportional to the relative velocity vrel
ij , and typically a rejection technique (null-method

technique) is used when choosing pairs. Specifically, the collision rate is made proportional

to the maximal possible relative velocity vmax
rel , and a randomly chosen pair ij is rejected

or accepted with probability vrel
ij /vmax

rel . A pair rejection involves a small calculation and

a random number generation and is thus rather inexpensive, as long as the acceptance

probability is not too small, which can typically easily be achieved by a judicious (but still

rigorous) choice for vmax
rel .

Traditionally DSMC is performed using a time-driven approach: The particles are first

propagated ballistically by a certain time step ∆t and then sorted into cells accordingly,

and then an appropriate number of stochastic collisions are carried out. Typically only a

fraction (10-25%) of the particles actually undergo a collision, and the rest of the particles

are propagated needlessly. Furthermore, the existence of a finite step leads to errors of order

∆t2, in addition to the errors inherent in DSMC that are of order ∆x2, where ∆x is the size

of the cells. Therefore, ∆t must be small enough so that particles move only a fraction of

the cell size during one step.

16



2. AED Implementation of DSMC

An alternative event-driven implementation of DSMC explicitly predicts and process cell

transfers, just as in the MD algorithm. Particles positions are thus only updated when

needed, and there is no time step error. The DSMC particles are represented as a non-

interacting specie δ, Iδδ = F , so that the MD algorithm does not predict binary collisions

for the DSMC particles. Instead, stochastic binary collisions are added as an external Poisson

event of the appropriate rate. One approach is to maintain a global time-of-next-DSMC-

collision tsc to determine when a stochastic collision is attempted, and to use cell rejection

to select a host cell for the collision. The rate of DSMC collisions is chosen according to

the cell with maximal occupancy Nmax
L , and a randomly chosen cell of occupancy NL is

accepted with probability NL(NL − 1)/ [Nmax
L (Nmax

L − 1)].

Since the DSMC fluid is perfectly compressible, the maximal cell occupancy can be quite

high for very large systems, and this leads to decreasing acceptance probability as the size

of the system increases. One can avoid cell rejections by using an asynchronous approach.

Each cell can store its own time-of-next-DSMC-collision, which is updated whenever the cell

occupancy changes. A separate event-queue is used to order these cell event times. The top

of this cell event queue is used as the time of the next “external” event. Other possibilities

exist, as commonly used in traditional KMC simulations [12]. For example, the cells could

be grouped in lists based on their occupancy and then an occupancy chosen first (with the

appropriate weight), followed by selection of a cell with that particular occupancy.

Most of the AS steps in Algorithm 1 for DSMC are shared with MD. The different steps

are associated with the processing of stochastic collisions:

• In Step 2 tex is the time of the the next DSMC collision. If a rejection-free technique

is used the cell at the top of the cell event queue is chosen, otherwise, a cell is selected

randomly and accepted or rejected based on its occupancy. If the cell is rejected,

tex ←∞.

• In Step 3 a pair of particles i and j is selected from the previously-chosen cell, and

accepted or rejected for collision based on the relative velocity. If accepted, momentum

and energy are stochastically exchanged among the particles and they are moved to

the top of the event queue with te = t, p = 0, and ν = 1.

17



We have validated that the event-driven algorithm produces the same results as the time-

driven one by comparing against published DSMC results for plane Poiseuille flow of a rare

gas.

3. Stochastic Event-Driven Molecular Dynamics (SEDMD)

The event-driven DSMC algorithm has few advantages over a time-driven approach, which

are outweighed by the (implementation and run-time) cost of the increased algorithmic com-

plexity. However, the AED variant of DSMC is very similar to AED hard-sphere MD, and

therefore it is relatively simple to combine DSMC with MD in an event-driven framework.

This enables the simulation of systems such as colloids or hard-sphere bead-chain polymers

[18] in solution, where the solute particles are treated using MD, and the less-important sol-

vent particles are treated approximately using DSMC. The solvent-solute interaction is still

treated with MD. Similar studies have already been carried out using time-driven MD for

the solute particles and a simplified variant of DSMC that approximates the solute particles

as point particles and employs multi-particle stochastic collisions [? ].

We have implemented such a combined algorithm, which we term Stochastic Event-Driven

Molecular Dynamics (SEDMD) [2]. The implementation is almost identical to classical hard-

sphere MD, with the addition of a new DSMC specie δ for which Iδδ = F . That is, the

DSMC“hard spheres” freely interpentrate each other, but collide as usual with other species.

The algorithm is much more efficient than pure MD, however, it is still not as efficient as

classical time-driven DSMC. The two main causes of this are the overhead of the event

queue operations in the AED variant of DSMC (note that the queue needs to be updated

after every stochastic collision), and also the cost of neighbor searches. Namely, for each

DSMC particle the nearby cells need to be searched in Step 9c to make sure they do not

contain any solute particles (recall that cell bitmasks are used to efficiently implement this).

In cases when most of the cells contain only DSMC particles, this can introduce significant

overheads.

This inefficiency is best corrected by combining time-driven with event-driven handling.

Specifically, only those those cells that neighbor cells that contain non-DSMC particles are

marked as event-driven (ED), the rest are time-driven (TD). DSMC particles outside the

marked region are treated more efficiently, using time-stepping and without any neighbor

18



searches, while the DSMC and MD particles inside the marked region are treated as in MD

(with the addition of stochastic collisions among DSMC particles). In cases when the solute

particles are much larger than the solvent particles, NNLs are used with a special technique

called bounded sphere-complexes [4] to handle neighbor searches for the large particles.

Whenever DSMC particles transfer from a TD to an ED cell they are inserted into the event

queue with an immediate update event, and if needed their neighborhood region and NNL

is constructed. Similarly, when DSMC particles transfers from an ED to a TD cell they are

removed from the event queue and their neighborhood region and NNL is destroyed.

The time-driven particles are updated together with a fixed time step ∆t. These time

step events are treated as a special external event and thus processed in correct time order

with the events scheduled for the particles in the combined MD/DSMC region. Stochastic

collisions are only processed at time step events, exactly as in traditional DSMC algorithms.

4. Open Boundary Conditions

In simulations of polymer chains in solution in three dimensions, a very large number of

solvent particles is required to fill the simulation domain. The majority of these particles are

far from the polymer chain and they are unlikely to significantly impact or be impacted by the

motion of the polymer chain. These particles do not need to be simulated explicitly, rather,

we can think of the polymer chain and the surrounding DSMC fluid as being embedded

into an infinite reservoir of DSMC particles which enter and leave the simulation domain

following the appropriate distributions.

Such open (Grand Canonical) boundary conditions (BC) are often used in multi-scale

(coupled) simulations. The combination of a partially time-driven algorithm and an un-

structured (ideal gas) DSMC fluid makes it very easy to implement open BCs by inserting

DSMC particles in the cells surrounding the simulation domain only at time-step events,

based on very simple distributions. At the beginning of a time step event, after possibly

rebuilding the cell masks, the time-driven DSMC particles are propagated as usual. If there

are external cells, (trial) reservoir particles are then inserted into the cells that are both

external and boundary. The trial particles are thought to be at a time t − ∆t, and are

propagated by a time step ∆t to the current simulation time. Only those particles that

move into a non-external cell are accepted and converted into real particles. Following the

19



Figure 1: The partitioning of the domain into interior (I) [either event-driven (ED) or time-driven

(TD)], boundary (B), and external (E) cells in two (left) and three (right) dimensions for a polymer

chain of 25 beads tethered to a hard wall. The cells are shaded in different shades of gray and

labeled in the two-dimensional illustration. The DSMC particles are also shown.

insertion of reservoir particles stochastic collisions are processed in each cell as usual.

Figure 1 provides an illustration of the division (masking) of the cells for the simulation of

a tethered polymer in two and three dimensions. The division of the cells into event-driven,

interior, boundary and external cells is rebuilt periodically during the simulation. This

rebuilding may only happen at the beginning of time steps, and requires a synchronization of

all of the particles to the current simulation time, a complete rebuilding of the cell bitmasks,

and finally, a re-initialization of the event processing. Importantly, particles that are in

purely external cells are removed from the simulation and those that are in event-driven

cells are re-inserted into the event queue scheduled for an immediate update event.

C. Diffusion Kinetic Monte Carlo (DKMC)

An exact AED algorithm for kinetic MC simulation of a collection of diffusing particles

was recently proposed in Ref. [13]. The main difference with MD is that the equation of

motion of the particles is not a deterministic but rather a stochastic ODE. The algorithm

simulates a trajectory that is sampled from the correct probability distribution. For pure

diffusion with transport coefficient D, the probability c(∆r, ∆t) of finding an isolated point

20



particle at a displacement ∆r at time ∆t is the Green’s function for the (time-dependent)

diffusion equation, ∂tc = D∇2c, with no additional boundary conditions. In three dimen-

sions

c(∆r, ∆t) = (4π∆t)−1/2 exp

[
− ∆r2

4D∆t

]
.

Particles that have a finite extent, such as spheres and cubes, are easily handled by consid-

ering their centroids as the diffusing point particles. Particles with orientational degrees of

freedom are more difficult to handle and for now we focus on the sphere case.

Assume that the protective region Pi is disjoint from all other protective regions and

the core Ci is restricted to remain within Pi. For point particles, one can show that the

probability c(∆r, ∆t), conditional on the fact that the particle never leaves the interior of

Pi, is again a Green’s function for the diffusion equation but with the additional boundary

condition that c vanish on the boundary of Pi. A single-particle propagator consists of sam-

pling from such a probability distribution c1. For simple protective regions such as cubes or

spheres relatively simple closed-form solutions for c1 exist. The probability distribution c1 is

only valid under the assumption that a given particle i remains inside Pi. From c1 (specifi-

cally, the flux ∇c1 on the boundary of Pi) one can also find the probability distribution that

a particle first leaves Pi for the first time at a time t̃ and at position r̃, i.e., the first-passage

probability J1(t̃, r̃). This distribution can be used to sample a time at which particle i is

propagated to the surface of Pi and Pi is updated.

The basic idea of the AED DKMC algorithm is to protect the particles with disjoint

protective regions and then use single-particle propagators to evolve the system. Typically

the protective regions would have the same position and shape as the particle itself but be

enlarged by a certain scaling factor µP > 1. At some point in time, however, two particles i

and j will collide and thus cannot be protected with disjoint regions. Such nearly-colliding

pairs are protected by a pair protection region Pij (e.g., two intersecting spheres, each

centered around one of the particles). A pair propagator c2(∆ri, ∆rj, ∆t) is used to either

find the first-passage time, that is, the time when one of the particles leaves Pij, or to

propagate the pair conditional on the fact that both particles remain inside Pij. Analytical

solutions for c2 = c
(D)
2 c

(CM)
2 can be found by splitting the problem into independent diffusion

problems for the center of (diffusional) mass r
(CM)
ij = (∆ri + ∆rj)/2 and for the difference

r
(D)
ij = ∆ri−∆rj walker (with some additional weighting factors for unequal particles). The

condition for collision dij = Dij forms an additional absorbing boundary for the difference

21



walker, and a collision occurs whenever the first-passage propagator J
(D)
2 (r̃

(D)
ij , t̃(D)) samples

a point on that boundary. For repulsive particles [15] the boundary dij = Dij would be

reflective (zero-flux) instead of absorbing.

If the particles are cubes closed-form solutions can easily be found for the pair propagators

[13], however, in general, two-body propagators are considerably more complex (and thus

costly) than single-body ones. One can in fact use approximate numerical propagators in

which the difference walker takes small hops until it gets absorbed at one of the boundaries

of its protection. This is similar to how one numerically predicts pair collisions between non-

spherical particles in MD simulations using time-stepping for just a single pair of particles

[4]. We have implemented hopping pair propagators for spheres. The only difference with

the analytical propagators is that the hopping trajectory may need to be reversed later if a

third particle forces a destruction of the pair protection before the scheduled pair event. We

have used a state-saving mechanism in which the state of the random number generator at

the beginning of the pair event is saved and later restored if the predicted event is cancelled.

If the predicted even does in fact occur we avoid the cost of repeating the same hopping

trajectory by saving the final state of the walk (i.e., the position of the difference walker)

when predicting pair events.

1. AED Implementation of DKMC

Geometric near-neighbor searches are an essential component of the DKMC algorithm,

and the same methods (LLCs and NNLs) as in MD are used. Cell transfers are not explic-

itly predicted or processed in this algorithm, rather, whenever the position of a particle is

updated the LLCs need to be updated accordingly. When NNLs are used, the collision of

Ci with Ni may be sampled exactly, or, alternatively, the neighborhood Ni may be updated

whenever Ci is very close to the inner wall of Ni. We say that a particle i is protected against

particle j or pair jk if Pi is disjoint from Pj or Pjk (an unprotected particle has Pi ≡ Ci),

similarly for pairs of particles. The goal of neighbor searches is to protect a particle i against

other particles and pairs with the largest possible Pi. There is a balance between rebuilding

protective and neighborhood regions too often and propagating the particles over smaller

steps, and some experimentation is needed to optimize the algorithm and minimize the num-

ber of neighbor searches that need to be performed. Whenever a protection Pi is destroyed,

22



particle i should be inserted back into the event queue with te = t, p =∞, ν = 0, so that it

is protected again right away.

The main AS steps in Algorithm 1 for DKMC simulations are:

• Steps 2 and 3 may involve the processing of particle birth processes, where a particle

of a given specie is introduced into the system to model external fluxes. These are

typically assumed to occur as a Poisson process and therefore the time to the next

birth is simply an exponentially distributed number, with the total birth rate given as

the sum of the birth rates for each of the species. The birth process may be spatially

homogeneous or the rate may depend on the cell in which the birth occurs. The

newborn particles are inserted into the queue with p = 0, ν = −1.

• Step 6 consists of sampling ri from c1 or J1 and typically also rebuilding Pi as in

step 8a. For ν > 0, a particle decay reaction may be processed, i.e., particle i may

disappear to produce zero, one or two “product” particles, which are inserted into the

queue with p = 0, ν = −1.

• Step 7 consists of sampling positions ri and rj from the appropriate distribution:

– If the event is the decay of i or j, then c
(D)
2 and c

(CM)
2 are sampled, and then the

decay reaction is processed.

– If the event is the collision of i and j, then c
(CM)
2 and J

(D)
2 are sampled, and the

appropriate reaction (e.g., annihilation, coalescence, chemical reaction, etc.) is

processed. This may destroy i and/or j and/or create new particles to be inserted

into the queue (with p = 0, ν = −1).

– If the event is the dissolution of the pair ij, then either c
(CM)
2 and J

(D)
2 , or c

(D)
2

and J
(CM)
2 are sampled, particle j is inserted back into the queue with p = 0,

ν = 0, and Pi is updated as in step 8a (this may protect the particles i and j as

a pair again).

• Step 8a is the primary type of event in step 8 and consists of updating Pi. The

processing of such “virtual” collisions with Pi consists of searching for the nearest

protection region Pj or Pjk among the neighbors of particle i (either using LLCs or

NNLs). Particle i is then protected against that nearest neighbor. If this makes Pi

23



too small then particle j or pair jk is propagated to time t and Pj or Pjk destroyed.

Finally, Pi, Pij or Pik is constructed again, depending on the exact local geometry.

• Step 9 consists of sampling event times from the appropriate distributions:

– In step 9a J1 is sampled.

– In step 9b an exponentially distributed time is generated based on the decay rates

for specie si.

– In step 9c J2 is sampled, as well as a decay time for each of the two particles,

and the earliest of the three times is selected.

2. Time-Driven Handling

Under certain conditions the exact event-driven handling of diffusion may become ineffi-

cient or cumbersome. For example, since all protections are either of single particles or pairs

very small protective regions need to be used in very dense clusters of particles where there

may be many nearly colliding triplets of particles. The hops taken by the asynchronous

algorithm will then become just as small as what a time-driven (approximate) algorithm

would use, and it will therefore be more efficient to use time-stepping for those particles

(and thus avoid the cost of event queue operations and also simplify overlap search). As

another example, some particles may have complex internal structure and thus their diffu-

sion or interactions with other particles may be difficult to treat analytically. For example,

tightly-bound collections of particles may act as a single particle that has complex internal

structure and dynamics (relaxation). Even for spherical particles it has proven that exact

pair propagators are difficult to implement.

Just as for the SEDMD algorithm above, one can add a time-driven component to the

asynchronous event-driven algorithm. Particles that are time-driven do not need to be

protected against each other, instead, they may be unprotected or they can be protected

only against event-driven particles. Particles whose protective regions overlap form a cluster

and should be treated using a synchronous algorithm (this cluster may include all time-

driven particles). In diffusion problems it is often the case that different species have widely

differing diffusion coefficients and therefore very different time-steps will be appropriate for

24



different species. To solve this problem, one can use the n-fold (BKL) synchronous event-

driven algorithm inside each cluster. In this algorithm, at each event (hop) only particles of

a single specie hop by a small but non-negligible distance and the rest remain in place, and

more mobile particles are hopped more frequently (with the correct relative frequency) than

the less mobile ones.

Note that a cluster may freely take hops up to the time of the next event in the queue

without stopping and modifying the event queue, since it is known that those hops will not be

pre-empted by another event. In some situations this may improve efficiency by reducing the

number of heap operations and also increasing the locality of the code by focusing multiple

events on the same (cached) small group of particles.

IV. DISCUSSION

In this section we focus on some of the difficulties in deploying AED algorithms in the

simulation of realistic systems. The best-known difficulty is the parallelization of AED

algorithms [6], which we do not discuss here due to space limitations. Instead, we will focus

on the difficulties that make even serial simulations challenging. It is important to point out

that for problems involving hard particles, that is, particles interacting with discontinuous

potentials, event-driven approaches are the only exact algorithm. Time-driven algorithms

always make an error due to the finite size of the time step ∆t, and typically ∆t must be

much smaller than the actual time step between events in order to guarantee that no events

are missed.

The most involved aspect of implementing an AED algorithm for a particular problem

is the need for analytic solutions for various one- and two-body propagators or event pre-

dictions. For MD, the difficulty is with predicting the time of collision of two moving hard

particles. For hard spheres, this can be done analytically relatively easily (but numerical

care must be taken [8]). When orientational degrees of freedom are involved, however, a time

stepped ODE-like methodology is needed since analytical solutions are difficult to obtain [4].

This makes collision prediction much more difficult to implement in a numerically-stable way

and also much more costly. In DKMC, there is a need to analytically construct the probabil-

ity distributions c1, c2, J1 and J2, or at least to find a way to efficiently sample from them.

These distributions are Green’s functions for a time-dependent diffusion equation inside re-

25



gions such as spheres, cubes, spherical shells, intersection of two spheres, or intersection of a

cone and a sphere. For time-independent problems such solutions can be constructed more

easily, but for time-dependent problems even the simple diffusion equation poses difficulties

(analytical solutions are typically infinite series of special functions in the Laplace domain).

Different boundary conditions such as reactive surfaces require even more analytical solu-

tions and tailor-made propagators. The handling of more complex equations of motion such

as the full Langevin equation (which combines convection and diffusion) has not even been

attempted yet.

This makes designing a more general-purpose AED program virtually impossible. This

is to be contrasted to, for example, time-driven MD where different interaction potentials

can used with the same time integrator. In general, time stepped approaches are the only

known way to solve problems for which analytical solutions do not exist, including two-body

problems in the case of MD or DKMC. The algorithm used in Ref. [4] to predict the time of

collision for pairs of hard ellipsoids combines a time-driven approach with the event-driven

one. It does this without trying to combine them in an intelligent way to avoid wasted

computation (such as repeated trial updates of the position of a given particle as each of its

neighbors is processed). We believe that such an intelligent combination will not only provide

a more general AED algorithm, but also make the algorithm more robust numerically.

More generally, combining event-driven with time-driven algorithms is important for ef-

ficiency (at a certain sacrifice in accuracy). When the time step is large enough so that

many events occur within one time step one can use the event-driven algorithm in-between

the updates in the time-driven approach [8, 17, 20]. When the time step is small, however,

events occur sparingly only in some of the time steps, and a different methodology is needed.

For example, a new kind of time step event can be added that indicates propagation over a

small time step (e.g., for the set of particles in pure DSMC cells). The essential advantage of

event-driven algorithms is that they automatically adjust to the time scale at hand, that is,

that they take the appropriate time step without any additional input. The real challenge

is to use time stepping in an event-driven framework in which the time step is adjusted

accordingly, while still processing events correctly. We have described such a framework for

the SEDMD and DKMC algorithms.

Another unexplored or barely explored area is that of using controlled approximations in

AED algorithms. Approximate event-driven algorithms have been used to handle a variety

26



of processes, however, these are often uncontrolled approximations. The approximate algo-

rithms may reproduce the required (macroscopic) physical averages just as well as the exact

algorithm would, however, controls are necessary to validate the simulations. Examples of

approximations that may be useful include ignoring unlikely interactions between certain

particles, approximate solutions instead of exact propagators (such as expansions around

the mean behavior), etc.

Almost all of the AED particle algorithms to date have focused on single-particle or

pair events. This is possible to do for hard particles because exact triple collisions are a

zero-measure event. However, for more realistic models, or when approximations are made,

events involving clusters of particles may need to be considered. For example, a cluster of

particles may evolve as a strongly-coupled (e.g., chemically bonded) unit while interacting

with other (e.g., freely diffusing) single particles or clusters. An additional assumption in

most AED particle algorithms is that events affect only one or two particles, so that the

event predictions of the majority of particles remain valid after processing an event. In

some situations, however, there may be global degrees of freedom and associated events

that affect all of the particles. For example, in MD there may be a macroscopic strain rate

that affects all of the particles, since all of the event predictions are invalidated when the

strain rate changes. And in principle the strain rate is coupled back to each of the particles,

so that every particle collision also changes the strain rate (albeit by a small amount). In

time-driven MD this is no problem since the evolution of the system is synchronous and the

strain rate evolves together with the particles, however, in event-driven MD such coupling

between all of the particles makes it impossible to schedule events efficiently.

Finally, multi-algorithm and/or multi-scale combinations including an AED component

have not been explored to our knowledge. As an example, consider the simulation of

nano-structures during epitaxial film growth [14]. At the smallest scales, time-driven (first-

principles or classical) MD is needed in order to study the attachment, detachment, or

hopping of individual particles or clusters. Once the rates for these processes are known,

lattice-based KMC can be used to evolve the structure more quickly without simulating the

detailed (vibrational) motion of each atom. At larger scales, the continuum-based DKMC

algorithm we described can be used to propagate atoms over large distances in lower-density

regions (across flat parts of the surface). Finally, a time-driven continuum diffusion can be

used to model processes at macroscopic length scales. Such ambitious investigations are a

27



challenge for the future.

V. ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Department of Energy by the

University of California Lawrence Livermore National Laboratory under Contract No. W-

7405-Eng-48 (UCRL-JRNL-???).

[1] F. J. Alexander and A. L. Garcia. The Direct Simulation Monte Carlo Method. Computers

in Physics, 11(6):588–593, 1997.

[2] A. Donev, B. J. Alder, and A. L. Garcia. An Event-Driven Hybrid Molecular Dynamics and

Direct Simulation Monte Carlo Algorithm. In preparation, 2007.

[3] A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger, R. Connelly, S. Torquato,

and P. M. Chaikin. Improving the Density of Jammed Disordered Packings using Ellipsoids.

Science, 303:990–993, 2004.

[4] A. Donev, S. Torquato, and F. H. Stillinger. Neighbor List Collision-Driven Molecular Dynam-

ics Simulation for Nonspherical Particles: I. Algorithmic Details II. Applications to Ellipses

and Ellipsoids. J. Comp. Phys., 202(2):737–764, 765–793, 2005.

[5] J. Elf, A. Doncic, and M. Ehrenberg. Mesoscopic reaction-diffusion in intracellular signaling.

In S. M. Bezrukov, H. Frauenfelder, and F. Moss, editors, Fluctuations and Noise in Biological,

Biophysical, and Biomedical Systems, pages 114–124, 2003.

[6] R. M. Fujimoto. Parallel and Distributed Simulation Systems. John Wiley & Sons, 2000.

[7] H. J. Herrmann and M. Müller. Simulations of granular materials on different scales. Comp.

Phys. Comm., 127:120–125, 2000.

[8] Y. A. Houndonougbo, B. B. Laird, and B. J. Leimkuhler. Molecular dynamics algorithms for

mixed hard-core/continuous potentials. Mol. Phys., 98:309–316, 1999.

[9] F. Jamalyaria, R. Rohlfs, and R. Schwartz. Queue-based method for efficient simulation of

biological self-assembly systems. J. Comput. Phys., 204(1):100–120, 2005.

[10] H. Karimabadi, J. Driscoll, Y. Omelchenko, and N. Omidi. A new asynchronous methodology

for modeling of physical systems: breaking the curse of courant condition. J. Comp. Phys.,

205(2):755–775, 2005.

[11] B. Mirtich. Timewarp rigid body simulation. In SIGGRAPH ’00: Proceedings of the 27th

28



annual conference on Computer graphics and interactive techniques, pages 193–200, New York,

NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[12] M. A. Novotny. A Tutorial on Advanced Dynamic Monte Carlo Methods for Systems with

Discrete State Spaces, volume IX of Annual Reviews of Computational Physics, pages 153–

210. World Scientific, Singapore, 2001.

[13] T. Oppelstrup, V. V. Bulatov, G. H. Gilmer, M. H. Kalos, and B. Sadigh. First-passage monte

carlo algorithm: Diffusion without all the hops. Physical Review Letters, 97(23):230602, 2006.

[14] J. S. Reese, S. Raimondeau, and D. G. Vlachos. Monte Carlo Algorithms for Complex Surface

Reaction Mechanisms: Efficiency and Accuracy. J. Comp. Phys., 173(1):302–321, 2001.

[15] A. Scala, T. Voigtmann, and C. D. Michele. Event-Driven Brownian Dynamics for Hard

Spheres. J. Chem. Phys, 126(13):134109.

[16] K. E. Schmidt, P. Niyaz, A. Vaught, and M. A. Lee. Green’s function Monte Carlo method

with exact imaginary-time propagation. Phys. Rev. E, 71(1):016707, 2005.

[17] H. Sigurgeirsson, A. Stuart, and W.-L. Wan. Algorithms for Particle-Field Simulations with

Collisions. J. Comp. Phys., 172:766–807, 2001.

[18] S. W. Smith, C. K. Hall, and B. D. Freeman. Molecular Dynamics for Polymeric Fluids Using

Discontinuous Potentials. J. Comp. Phys., 134(1):16–30, 1997.

[19] J. S. van Zon and P. R. ten Wolde. Green’s-function reaction dynamics: A particle-based

approach for simulating biochemical networks in time and space. The Journal of Chemical

Physics, 123(23):234910, 2005.

[20] R. S. Wedemann, V. C. Barbosa, and R. Donangelo. Defeasible time-stepping. Parallel

Comput., 25(4):461–489, 1999.

29


